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DEDICATED TO THE MEMORY OF GEZA FREUD

There is only one paper of Géza Freud devoted to lacunary Fourier
series [2], and part of another [1]. They are beautiful, and I am happy to
have an opportunity to write on them.

Let us consider an Hadamard lacunary Fourier series

S(x)~ Y, (ay cos nx+ by sin n, x), (1)
k=0

where ny=0, n, > 1, and inf, . ((n, . /n,) =g > 1. It may be convenient to
write the series in (1) in the form

Z ry cos(n, x + @) (r,=0) (2}
k=0
or
Z cre™ ) (n_x=~ng) (3}

If f(x) is bounded on an interval, the three series converge absolutely, and
we can write = instead of ~ in (1). The first example of such series is the
famous Weierstrass example of a nowhere differentiable function (r; = 5%,
where b is an odd integer >3, and r,=a*=a, with 0<a<1 and
ab> 1+ {3m/2)). Weierstrass’s condition on ab is just for convenience, and
it can be relaxed to ab > 1. This was discovered by Hardy in 1916, using a
very complicated method. Actually Géza Freud made it quite simple
{Theorem 6 in his 1962 paper).

THEOREM 1. [If f(x) is differentiable at one point, v, =o(n;*) (k— oo ).
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This was the starting point both of his 1966 paper, and of a work of M.
and S. Izumi and myself [3]. Let me explain the 1. I. K. point of view,
which goes back to M. E. Noble [4] and Masako Sato (Mrs. Izumi) [5].
The Fourier coefficients in (3) can be written as

ci=|" 1) Ty e dx/ [ Ty dx “)

—T7

whenever T, (x) is a positive trigonometric polynomial of degree smaller
than v, given by

Ve =min(ny g — Mg, B — R ).

The same is true if £>2 and if we replace f(x) by f(x)—acos(x+ ¢). If
f(x) is differentiable at 0, we can choose a and ¢ so that

f(x)—acos(x+o)=o(lx])  (x=0),

therefore, assuming that [ ; 7,./{* . T, converges to 1 (k — c0) whatever

6>01s,
ck=o<Jj Ix] Tk(x)dx/r

-7

Ty(x) dx).

Choosing T, =square of the Fejer kernel of degree [v./2] we obtain
¢, = o(v; 1), therefore ¢, = o(n; ). The same conclusion holds if we assume
that f(x) is differentiable at any given point, which proves Freud’s theorem.

This works in an even simpler way if we assume that f(x) satisfies a
Lipschitz—Hdlder condition at a point x,, i.e.,

fxo+h)—f(xe)=0(h*) (h-0,0<a<]1).
Then the conclusion is
ri=0(n;"),

which, in turn, implies f'€ Lip . Therefore, for Hadamard lacunary Fourier
series, a Lipschitz condition of order « at one point (note that 0 <a < 1!)
implies the same uniform Lipschitz condition. Is it possible to replace the
Hadamard lacunary condition by another? No, it is one of the few exam-
ples where the Hadamard lacunary condition proves necessary as well as
sufficient. This is in the L.ILK. paper (see also Kahane [26]), together with
a number of variations on the same theme (consider a C* or even a C®
function at one point, estimate the successive derivatives, find the smallest
function near 0 with spectrum {n,}, etc.). This direction was continued by
Benke [6].
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While L1LK. start from (4) Geza Freud systematicajly uses the relations
between

J(x+h)—f(x)

L s o),

where s, and o, are the partial and Fejér sums of the Fourier series, and

~1/n. This idea was elaborated in his 1962 paper [17], without assuming
first any kind of lacunarity. Here is one of the results he obtains in 1966:
suppose ¥{J) is an increasing function (J > 0) such that

Jéﬂf_)dt+6fn£(§t—)dl=0(1)‘//(5)~
t s 1

0

If {x) is the function in (1) and satisfies

Sfxo+h)—flxo)=O0)¢(lhl)  (resp. o(1) ¥ (1A]))

as )i — 0 at one single point x,, then we have uniformly in x
Sa+h)—f(x)=00)y(h)  (resp.o(1)¥(|A})).

When ¥(¢) =¢* (0<a < 1), it is what we already mentioned. En passant, he
obtains estimates for 2, . y 1, Or .o v i P, under various local conditions
for f(x) at x,.

Let us go back to the 1962 theorem. What happens if r, = 1/n,2? We
already know that f(x) is nowhere differentiable. Can we say more? Yes,
indeed, and it is a beautiful statement of Geza Freud (Theorem 5), of
which 1 am giving now a slight improvement.

THEOREM 2. Suppose O<oa<mr,<p<oco and n,<v* (k=1,2,.).
Then

@) fix+h)+f(x—h)=2(x)=0(hl) and [fix+h)—f{x)=
O(jh| log 1/|h]) (h— 0) uniformly with respect to x (xe [ —=n, n]).

(b) Tm, o |f(x+h)—f(x)l/(|h] log 1/|h])> 0 for every x except on a
set of the first category of Baire.

(c) 0<Tim,_olf(x+h)—f(x)I/(1hl \/log 1/hlogloglog 1/h) < oo

Jfor almost every Xx.
(d) Tm,_o|f(x+h)—f(x)l/|hl < o for a dense set of x.
{(€) f(x) is nowhere differentiable.

Since (a) is classical and (e) derives from the preceding theorem, let me
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only sketch the proofs of (b), (c), (d). In any case Geza Freud observes
that

x+h X !
z-(——h)ﬂ——) — Y meresin(mex+ @)+ 0(1) (5)
k=1
if han !, that is Ixlog 1/|h].
For (b) we have to prove that

1 l
7 Z Nty sin(ngx + @) >0 (6)

except on a set of the first category. Actually it is known that for some
C(g)>0 we have

sup ¥, pysinn,x+0)> Cla) Y, 0, (7)
xel j=k j=k
whenever I is an interval of length larger than ;' (Weiss [7], J-P.
Kahane, G. and M. Weiss [8]), and p;> 0, therefore

- ! I
lim <z p; sin(n;x + qo,-)/z pj> > C(q)
Ime\joy i=1
or a dense G;-set whenever X;_; p,= co. Choosing p;=n;r; we have (6),
that is (b).
For (c) what we have to prove is

!
0<11i_rﬁ ((1/~/lloglog DY nerg sin(nkx—|—<pk))<oo (8)
-® k=1

for almost every x. This is Mary Weiss’s law of the iterated logarithm [9].
For (d) we want to prove

]

Y meresin(nex + @) = O(1) ©)

k=1
for a dense set of x. If ¢ is large it is easy. In the general case we divise {n;}
into a finite number of sequences with a large lacunarity constant. This is
copied from Zygmund [107]. It finishes the proofs.

The theorem of Zygmund [10] deals with a Hadamard lacunary

trigonometric series

[eo)
Y p;sin(nx+9))
k=1
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with p;— 0 (not necessarily a Fourier series). Such a series, the theorem
says, converges on a dense set of x. Let us state an easy consequence.

THEOREM 3. If ro=o(n; ), f(x) is differentiabie on a dense set.

The proof comes from the fact that (5) holds with o1} instead of O(1),
due to the assumption n.r, = o(1).

I have already mentioned the importance of Theorem 1. It is the easiest
way to understand why the series

Y. b *cos b¥x (10)
k=0

(b integer > 2) represents a nowhere differentiable function.

Now let me explain the importance of Theorem 2; we may suppose that
f(x) is given by (10). I shall insist on (b), (c), and (d). From measuie
theoretical point of view, (c) is the ordinary behaviour. Considering x as
the time, the ordinary points are defined by (c), the rapid points by (b}, the
slow points by (d). From (a) and (e) we see that the oscillation of f at x is
as rapid as possible when x is a rapid point, as slow as possible when x is a
slow point. The situation for (10) is not so simple as for

€KO

Y. b cos brx (1)

k=0
when 0 <o < 1. In this case,

0< g S-S
h—0 |h|oc

holds everywhere, and moreover fe A, : all points are ordinary points.

It happens that ordinary points, rapid points, slow points occur for the
Wiener function of Brownian motion (and for other Gaussian stationary
processes as well). This was found by Orey and Taylor [11] for tapid
points and by myself [12] for slow points, without being aware of the
striking analogy with the case of series (10). For fine properties of slow
points see Davis [13] and Perkins [14], for slow points of other processes
Kahane [15]; see also [27].

There are many things in common between lacunary trigonometric series
and random series. Here is an important comparison principle, due to
Philipp and Stout [16]: assuming A7 =43>% _ a? — o0 and g, =o0(A4}7 %)
(0 >0), the random process defined by

S(t,w)= Y a,cos(2nn, w)

k<N
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when A3 <t< A4}, ,, weQ=[0, 1] has a version (on a larger probability
space) which satisfy

S(6)— X(2) = o(s127%),

where X(¢) is the Wiener function of Brownian motion, and 4>0. This
explains why the central limit theorem and the law of the iterated
logarithm (used in the proof of Theorem 2) hold for partial sums of
lacunary series. The lacunarity condition can be relaxed: see Takahashi
[17]. If on the contrary the lacunarity condition is reinforced, more precise
results are available: see Hawkes [18]. For similar results see Berkes [19],
Kaufman and Philipp [20], Dudley and Hall [21], Kaufman [227], Murai
[23]. In this last paper, Murai proves that the central limit

theorem holds when a, =1 and s, = [exp \/E], a long standing question
introduced by P. Erdds.

As an application of Hawkes results (Theorem 5 in Hawkes [18]) it can
be checked that the set of x where (b) holds in Theorem 2 has Hausdorff
dimension 1 when f(x) is given by (10). This seems very likely in the
general case. Generally speaking, a lot of results on f(x + #) —f(x) can be
derived from results on partial sums of lacunary trigonometric series and
from Geza Freud’s comparison principle (Theorem 1 in Freud [11]). Some
old problems can be attacked anew. For example, Hardy 1916 was
interested in distinguishing the cases when |(f(x+ h)—f(x))/h| diverges
boundedly. This has very much to do with Hawkes 1980.

Though the relation with G. Freud is not so apparent let me mention
two directions in which lacunary series were studied vigorously in the last
few years.

The first and most important is the relation between lacunary
trigonometric series and random trigonometric series. This is fundamental
in the modern theory of Sidon sets, developed by S. Drury, D. Rider, G.
Pisier, J. Bourgain, and many other (for references on Sidon sets see
Myriam Déchamp [24]).

The second is the range of lacunary Taylor series inside the disc of con-
vergence. The old Paley conjecture (the range is the whole plane except
when the series converges absolutely on the boundary) was solved by
Murai [25].

REFERENCES

1. G. Frevp, Uber trigonometrische Approximation und Fouriersche Reihen, Math. Z. 78
(1962), 252-262.

2. G. Freup, On Fourier series with Hadamard gaps, Studia Sci. Math, Hungar. 1 (1966),
87-96.



10.

iL

12.

LACUNARY FOURIER SERIES 57

. M. Izums, S.-I. Izumi, AND J.-P. KAHANE, Théorémes élémentaires sur les séries de

Fourier lacunaires, J. dnal. Math. 14 (1965), 235-246.

. M. E. NogLg, Coefficient properties of Fourier series with a gap condition, Math. Ann.

128 (1954), 55-62.

. M. SaTo, Lacunary Fourier series I, Proc. Japan Acad. 31 (1955), 402-405.
. G. BENKE, Lacunarity and Lipschitz properties on totlally disconnected abelian groups,

Michigan Math. J. 25 (1978), 163-171.

. M. Weiss, Concerning a theorem of Paley on lacunary power series, Acta Mark. 102

(1959), 225-238.

. J.-P. KaHaNg, M. WEIss, aNnp G. WEIss, On lacunary power series, 4rk. Mai. 5 (1963),

1-26.

. M. WEiss, On the law of the iterated logarithm for lacunary trigonometric series, Trans.

Amer. Math. Soc. 91 (1959), 444-469.

A. ZyGMUND, On the convergence of lacunary trigonometric series, Fund. Math. 16
(1930), 90-107.

S. Orey anp S. J. TAYLOR, How often on a Brownian path does the law of iterated
logarithm fail? Proc. London Math. Soc. 28 (3) (1974), 174-192.

J.-P. KAHANE, Sur l'irrégularité locale du mouvement brownien, C. R. Acad. Sci. Paris 278
(1974), 331-333.

13. B. Davis, On Brownian slow points, Z. Wahrsch. Verw. Gebiete 64 (1983), 359-367.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

. E. PERKINS, On the Hausdorff dimension of the Brownian slow points, Z. Wahrsch. Verw.

Gebiete 64 (1983), 369-399.

J.-P. KaHANE, Slow points of gaussian processes in “Conference on Harmonic Analysis in
Honor of Antoni Zygmund,” Vol. 1, The Wasworth Math. series, pp. 67-83, 1983.

W. PriLipp AND W. STOUT, Almost sure invariance properties for partial sums of weakly
dependent random variables, Mem. Amer. Math. Soc. 161 (1975).

S. TakaHasHl, Almost sure invariance principles for lacunary series, Tohoku Math. J. 31
(4) (1979), 439-451.

J. Hawkss, Probabilistic behaviour of some lacunary series, Z. Wahrsch. Verw. Gebiete 53
(1980), 21-33.

1. BerkEes, On the central limit theorem for lacunary trigonometric series, Anal. Math. 4
(3) (1978}, 159-180.

R. KAUFMAN AND W. PHILIPP, A uniform law of the iterated logarithm for classes of
functions Ann. Probab 6 (1978), 930-952.

E. DupLey anp P. HALL, The Gaussian law and lacunary sets of characters, J. Austral.
Math. Soc. Ser. A4 27 (1) (1979), 91-107.

R. KaurMmaN, On the approximation of lacunary series by Brownian motion, dcta Math.
Acad. Sci. Hungar. 35 (1980), 1-2; 61-66.

T. Mural, The central limit theorem for trigonometric series, Nagoya Math. J. 87 (1982),
79-94.

M. DEecraMPs, Sur les compacts associés aux ensembles lacunaires, les ensembles de Sidon
et quelques problémes ouverts. Groupe de travail sur les espaces de Banach invariants per
translation, exp. no. 7, pp. 84-101, Publ. Math. Orsay 84.01, 1984.

T. Mural, Une conjecture de Paley sur les séries de Taylor lacunaires, C. R. Acad. Sci.
Paris 290 (1980), 947-948.

J-P. Kauang, Lacunary Taylor and Fourier Series, Bull. Amer. Math. Soc. T¢ (1964),
199-213.

B. Davis aNp E. PERKINS, Brownian slow points: the critical case, Ann. Prob. 13 (1985),
779-803.



